A manganese-enhanced diet alters brain metals and transporters in the developing rat.

نویسندگان

  • Stephanie J Garcia
  • Kristin Gellein
  • Tore Syversen
  • Michael Aschner
چکیده

Manganese (Mn) neurotoxicity in adults can result in psychological and neurological disturbances similar to Parkinson's disease, including extrapyramidal motor system defects and altered behaviors. However, virtually nothing is known regarding excess Mn accumulation during central nervous system development. Developing rats were exposed to a diet high in Mn via maternal milk during lactation (PN4-21). The high Mn diet resulted in changes in hematological parameters similar to those seen with iron (Fe) deficiency in dams (decreased plasma Fe; increased plasma transferrin [Tf]) and pups (decreased hemoglobin [Hb] and plasma Fe; increased plasma Tf and total iron binding capacity). Mn-exposed pups showed an increase in brain Mn, chromium, and zinc concurrent with a decrease in brain Fe. In conjunction with the altered transport and distribution of essential metals within the brain, there was enhanced protein expression of the divalent metal transporter-1 (DMT-1) and transferrin receptor (TfR) overall in the brain; there was a general increase in each region analyzed (cerebellum, cortex, hippocampus, midbrain, and striatum). Neurochemical changes were observed as an increase in gamma-aminobutyric acid (GABA) and the ratio of GABA to glutamate, indicating enhanced inhibitory transmission in the brain. The results of this study demonstrate that developing rats undergo alterations in the transport and distribution of essential metals translating to neurochemical perturbations after maternal exposure to a diet supplemented with excess levels of Mn.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Iron deficient and manganese supplemented diets alter metals and transporters in the developing rat brain.

Manganese (Mn) neurotoxicity in adults can result in psychological and neurological disturbances similar to Parkinson's disease, including extrapyramidal motor system defects and altered behaviors. Iron (Fe) deficiency is one of the most prevalent nutritional disorders in the world, affecting approximately 2 billion people, especially pregnant and lactating women, infants, toddlers, and adolesc...

متن کامل

Estrogen and progesterone attenuate glutamate neurotoxicity via regulation of EAAT3 and GLT-1 in a rat model of ischemic stroke

Objective(s): Glutamate is the most widespread neurotransmitter in the central nervous system and has several functions as a neuromodulator in the brain although in pathological conditions like ischemia it is excessively released causing cell death. Under physiological conditions, glutamate is rapidly scavenged from the synaptic cleft by excitatory amino-acid transport...

متن کامل

Study on the effect of neuroprotective prolonged and intermittent normobaric hyperoxia on serum level of TNF-α and glutamate transporters expression in rat brain

Introduction: Prolonged and intermittent oxygen pre-exposure is associated with protection against ischemic reperfusion (IR) injury. In the current study, attempts were made to investigate the relationship between exposure to prolonged and intermittent normobaric hyperoxia (NBHO) and expression of excitatory amino acids transporters (EAATs) and TNF-α level. Method: Rats were divided into fo...

متن کامل

The ZIP family of metal transporters.

Members of the ZIP gene family, a novel metal transporter family first identified in plants, are capable of transporting a variety of cations, including cadmium, iron, manganese and zinc. Information on where in the plant each of the ZIP transporters functions and how each is controlled in response to nutrient availability may allow the manipulation of plant mineral status with an eye to (1) cr...

متن کامل

P81: Psychosocial Stress of Maternal Deprivation Enhanced Volume of Lateral Ventricle in Rat Brain

Brain areas implicated in the stress response include the amygdala, hippocampus and prefrontal cortex. Neonatal stimulation of an animal by handling or by enhanced maternal care induces at adult age a decrease of the hypothalamo-pituitary adrenal (HPA) response to stressors, a decrease of anxiety in a novel environment, and neuroanatomical changes. In this present study we demonstrated that mat...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Toxicological sciences : an official journal of the Society of Toxicology

دوره 92 2  شماره 

صفحات  -

تاریخ انتشار 2006